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SUMMARY

In various fields, data from repeated measurements are pooled across
individuals to obtain valid estimates for population characteristics. If the
individual effects are treated as random, mixed models can be fitted to the data.
In the case where the same design is used for all individuals, the ordinary and
the weighted least squares estimator both coincide with the average of
individually fitted curves. In this situation optimal and efficient designs can be
obtained.
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1. Introduction

In various fields such as pharmacokinetics, agriculture, psychology, market
research, medical diagnostics, etc., there is interest in reference curves, which
describe the characteristics of a whole population (e.g. Mentré et al., 1997, Retout et
al., 2002, Liu et al., 2003, Curran and Hussong, 2003, Sandor and Wedel, 2002,
Schwabe et al., 2001), while repeated measurements are available for individuals.
Here, the design of the experimental settings, such as the time points of
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measurements, specification of a choice set or spatial allocations, is under the control
of the investigator.

Many of these relationships are of a non-linear structure. However, the quality of a
design is often measured in terms of the corresponding linearization based on an
asymptotic approach. Therefore, we will focus in the present note on population
models specified as linear mixed models where the individual curves are described by
random effects. The model will be introduced in Section 2 and the corresponding
weighted least squares estimators are derived. In fact, the weighted least squares
estimator is a matrix weighted mean of individually fitted curves. Such models have
also been addressed as random regression, random coefficient regression, latent
growth curve, latent trajectory, empirical Bayes, hierarchical or multi-level models in
the literature.

In Section 3 we consider the relevant situation that all individuals are treated under
the same regime. It turns out that in that case the weighted least squares and the
ordinary least squares solution both coincide with the common average of the
individual curves. Consequently, for the best (linear) unbiased estimator, no
knowledge is required of the covariance structure for the random effects. Moreover, a
simple representation of the covariance matrix is exhibited which is valid even in the
case of a singular design. These models have been thoroughly investigated by Rao
(1967) and many others in the literature. However, only a few attempts have been
made to design such experiments. First results were obtained by Gladitz and Pilz
(1982) in connection with a Bayesian approach, when individual prediction is of
interest instead of estimation of the mean responses. A more general treatment has
been presented by Luoma (2002) and Liski et al. (2002, p. 9, p. 52). Fedorov and
Hackl (1997, p. 75) deal with the approximate theory and establish an equivalence
theorem. This usually requires a large number of replications per individual
Schmelter (2005) establishes that the designs with common regime, considered here,
are optimal within a more general setting. For particular models, design problems
have been studied by Malyutov and Protassov (2002), Fedorov and Leonov (2004),
Mentré et al. (1997), Retout et al. (2002), and Sandor and Wedel (2002) in a
biomedical, pharmaceutical or market research context, respectively.

Based on the simple representation of the covariance matrix obtained, we can find
optimal or, at least, efficient designs for estimating the population parameters, which
is done in Section 4. The results are illustrated by some examples.

We conclude with a discussion of the results and some open problems. In
particular, the results can be generalized to the comparison of treatment effects on the
population parameters.
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2. A Linear Mixed Model

We assume that the individual curves are governed by a common
functional structure and that there are additional observational errors.
Observations are given by a common linear model

.
Y, =f(x;) b, +¢,,

J=L..,m, ,and i=1,..,n. Here, Y, is the jth observation for individual i at the

1 Y
experimental setting x, subject to a random error &,, m, is the number of

observations for individual i, and # is the total number of{ individuals. f=(f,.., f,)
are known regression functions and b, = (b,,...,5,)" is the p-dimensional vector of
parameters for the individual curve associated with subject i . For example, all curves
may be straight lines (individual linear regression) or all curves are polynomials of a
fixed degree (individual quadratic regression etc.). However, the experimental
settings x, need not be merely restricted to the time points of measurements (x; =1t;,
ty <..<t, ) as in growth curve models (see Christensen, 2001, p. 49), but may also
describe additional factors such as treatments, measurement methods or even dosage
or spatial characteristics, to cover all possible applications in mind.

The individual parameters b, are assumed to be random, drawn from a
homogeneous population, with mean E(b,)=8 and covariance matrix
cov(b,) = o’D. Moreover, the individual effects are assumed to be uncorrelated to
each other, cov(b,,b,)=0 for i=#i’, and to the error terms, cov(b,,&,)=0. Finally,
homoscedastic errors are assumed,

Var(e;) =0 >0, cov(g;,6,,) =0 for (i, /) # (i, /) -

Under normality assumptions this means that b, ~ N(8,6°D), ¢, ~ N(0,0*) and
all individual effects and observational errors are independent.

To allow for fixed effects across the population, the dispersion matrix D may be
singular.

In the present note we are mainly interested in the vector of population parameters
B=0B, ,ﬁ’p)T , which characterizes the mean response of the whole population.

Accordingly, the model equation can be rewritten as a standard linear
mixed model

Yij =f(xy)Tﬂ+f(xij)T(b,- —ﬂ)+€ij )

where, now, f(x;)"f is the mean response, E(Y,j)=f(xij)Tﬂ, and the random
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component f(x,)"(b,—B)+¢, has zero mean and variance o’(1+f(x;)" Df(x,)).

Observations  belonging to the same individual are correlated,

cov(¥,,Y,) = o*f(x;) Df(x;), j# j', while observations coming from different
individuals are not, cov(¥,,Y,)=0,i=i . This is exactly the setting of a completely
randomized design for the individuals.

Now, for each individual i, denote by Y, =(¥;,....%,,)" and g =(&,,...&,,)" the

vectors of corresponding observations and observational errors, respectively, and by
F, = (f(x,),..,f(x,,))" the associated m, x p design matrix. Then

Yi =Fiﬁ+Fi(bi—ﬂ)+gl

describes the contribution of individual i with mean response E(Y;)=F, S and

covariance cov(Y,) = c’V,, where
V,=1, +F,DF/

and I, denotes the mxm identity matrix. For the whole study population of »
individuals we combine the individual observation and error vectors Y, and ¢; to
form the N -dimensional population vectors

Yl &1
Y=|:| and &=| : |,
Y, En

n

respectively. Here, N = Z; m, is the total number of observations across the whole

sample of individuals. Accordingly, the N x p population design matrix becomes

The whole observation vector Y can, then, be written as

Y=FB+G(b-1,0p8)+¢,

where G is block diagonal,
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FE 0 b,
G= , and b=
0 F, b,

is the (random) vector of individual parameters. Note that E(b)=1 ® § where 1, is

an n-dimensional vector with all entries equal to one, and “® ” denotes the common
Kronecker product of vectors and matrices, respectively. Consequently, the
expectation of Y equals FA and the covariance matrix cov(Y)=0o"V is block
diagnonal,

where the diagonal blocks are the covariance matrices for the single individuals. This
structure is due to the fact that both the individual parameter vectors b, and the

individual errors ¢; are uncorrelated,
cov(b) =c’I, ®D, cov(¢) =o’l, and cov(b,&)=0.

We first consider the regular case that the design matrix F has full column rank
p. If the dispersion matrix D is known, the best linear unbiased estimator for the

population parameter S is given by the weighted least squares estimator
Bus=(FTV'F) FT V'Y
according to the well-known Gauss-Markov theorem.

Due to the block diagonal structure of V , the weighted least squares estimator
may be rewritten as

n -1 n
BWLS = [Z FiT Vi_l F.] Z FiT Vi_l Y,
i=1 i=1

n -1 n
{5 viE| 3 e,
i=1

i=l
where b, is any (weighted) least squares solution for the individual curve
b,=(F' V/'E] ET VY,

by means of the normal equations. Here, A~ denotes any arbitrary generalized
inverseof A, i.e. AATA=A.
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As V,F,=(1, +F,DF)F, =F(I,+DF] F)=FU, for some pxp matrix U,, the

individual weighted least squares solution coincides with the ordinary least squares
solution

b;

(FF) FY,

(see Zyskind, 1967). The individual estimators b, therefore do not require knowledge
of the dispersion matrix D. This is in accordance with the fact that random
coefficients are immaterial when observations are available for a single individual
only.

Note that the individually fitted parameters b; are not the best linear unbiased
predictors as they ignore the covariance structure D and the information that can be
derived from the other individuals in the population. In fact, the best linear unbiased
predictors are weighted combinations of the individually fitted parameters and the
population estimates (see e. g.McCulloch,2003,p.13).

If all individual design matrices F, have full column rank p, then individual
curves can be fitted uniquely. The (unique) weighted least squares estimator B isa

matrix weighted mean of the individually estimated parameters. However, in this
averaging procedure the dispersion matrix D is involved.
The covariance matrix of the weighted least squares estimator is given by

cov(B) = az[z": F'v! F} .
i=1

For an early review of the analysis in the regular case when F has full rank we
refer to Spjatvoll (1977).
In the case where F does not have full column rank p, it is still true that

Bos=E V'EYF V'Y

= [i FiT V;l Fp}_i FiT Vi_I F, 6"
i=l i=1

is a weighted least squares solution, whatever generalized inverse of F'V'F
=" F'V/'F, and individual least squares solutions by--b, are chosen.
Moreover, if the linear aspect y =w(B8)=Lg is identifiable, ie. L = KF

fora suitablematrix K, then y = L, is the best linear unbiased estimator of w with
covariance matrix
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cov(y) = o’L

i F,-T Vi-] E J’LT
i=]

which depends, in general, on the dispersion D.
In many applications the choice of the experimental settings x,, j=1,..,m,

i=1,..,n, is under the control of the investigator and may be chosen from a design
region ¥ of possible settings. As the quality of an estimator measured in terms of its

covariance matrix heavily depends on the settings x, , the design of these settings is

ij b
an important task. Moreover, the (co)variances depend on the number »n of

individuals and on the numbers m, of repeated measurements for each individual.
Even if we assume (as we do here) that these sample sizes » and m, are fixed, there

are usually still many possibilities for individual designs (x,,...,x,, ). Therefore, in

what follows, we will restrict our attention to the practically relevant situation in
which all individuals have the same design.

3. Designs with Common Regime

In practical situations such as human or animal pharmacokinetic studies or
medical diagnostics there are often external restrictions, e.g. technical
implementations (see Figure 1 for a spatial scheme in medical diagnostics), which
force the experiment to be performed with identical regimes for all individuals. This
means that for each individual the number m; of repeated measurements equals m,
and the experimental settings x, = x; are identical across all individuals.

30° -

vertical eccentricity

[ ] ® 06 8l0 00 o
®ole®
* .. .é—

horizontat eccentricity

Figure 1. TCC-grid (Schwabe et al., 2001) for the perimetric investigation of the visual ability
(differential luminance sensitivity, right eye, blind spot omitted)



32 M. Entholzner, N. Benda, T. Schmelter, R. Schwabe

Thus both the design matrices F, =F, and the associated covariance matrices
V, =V, coincide for all individuals (see Liski et al., 2002, p. 9, Fedorov and Hackl,
1997, p. 75, for an extension to approximate designs, and Schmelter, 2005, for the
fact that such designs turn out to be optimal within a more general setting). If all
individuals have the same design, the weighted least squares estimator simplifies to
the mean of the individually fitted parameters

ﬁw:.s = (”FlT \25 Fl]-lz": E' VY,
P
B
—n ; b;

if F, has full column rank p.

Hence, calculation of the weighted least squares estimator f,,; does not require
knowledge of the dispersion matrix D. Moreover, f,,; coincides with the ordinary
least squares estimator

ﬂAWLS =BOLS =(nF1T F, )-IEIFIT Y,

(see e.g. Rao, 1967, or Bischoff, 1992, for a related result). In general, for every linear
identifiable aspect y =y (8 )=L B thematrix L canberepresentedas L=K, F, , and the

weighted least squares estimator, which is the best linear unbiased estimator, equals

where

is the corresponding individual estimate. In particular, for estimating the mean
response u(x)=f(x)" B ata prespecified experimental setting x , we obtain

() = %Z ),

where 4(x)=f(x)" (F F,)"F"Y, is the fitted value of the individual curve evaluated
at x . This fact is depicted in Figure 2 for data obtained from twelve healthy subjects
aged thirty to forty where the design of Figure 1 was used (Schwabe et al., 2001).



A Note on Designs for Estimating Population Parameters 33

14
14

7 w
g o g v
£ z
I g o
3 3
8 8
«© «©
g §
£ £
;S © _S © \
g v § <+
2 £
A=) k=]
N ~N
T T T T T T T
-80° -20° -10° 0 10° 20° 30° -30° -20° -10° ©0° 10° 20° 30°
horizontal eccentricity horizontal eccentricity

Figure 2: individual profiles (left panel) and estimated population mean (right panel) for the visual
ability (right eye, horizontal cross section at vertical eccentricity 0°, blind spot omitted)

For every identifiable aspect ¥ =y(B)=Lpg with L=K,F, the covariance
matrix of the (weighted) least squares estimator is given by

o Tyl )T
cov(w):—;—L(F, V''F | L

=—2-L([FJF,]‘+D)LT.
n

This can easily be seen from the fact that the ordinary and weighted least squares
estimators coincide,

cov(y) = COV(W(ﬁ ous)

——ciL(FTF]_FTV F [FTF]‘LT
- n 1 1 1 151 1 1

o g F(FTF)‘FT[I +F DFT)F(FTFJ'FTKT
" 1714 1 1 m 1 1 1 1 1 1 1

2 -
=7 K, Fl((FlT F,) + 1))1?1T K]
n

="—2L([FlT F, ]'+D)LT.
n
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By letting L=F," V' F, we see, as a by-product, that (F," F,)” +D is a generalized
inverse of F V,'F,.

Note that the covariance matrix decomposes additively into the covariance matrix
L(F'F) L™ of the fixed effects model, ¥, =f(x,)" B+¢;(D=0), neglecting the
random effects, and the contribution cov(w(b,))=LDL" from the original dispersion
of the random effects. If F, is of full column rank p, then the covariance matrix for

the whole parameter vector decomposes to cov(ﬁms):L’:—((FlT F)"'+D) (see Rao,

1967, Mentré et al., 1997, Retout et al., 2002, and McCulloch, 2003, for particular
cases).

Though the best linear unbiased estimators do not depend on the dispersion matrix
D, it is evident that their covariance matrices are strongly influenced by the
variability of the random effects.

It is worth mentioning that, instead of the above cross-sectional consideration, the
estimation can also be performed in a longitudinal way based on the averaged

observations Y=1%""Y,,

BWLS = (FIT Fl )_l FlT ?—

(see Carrig et al., 2004).

4. Optimal Designs

The design problem at hand is to determine x,,...,x,, such that

cov(B,,,) = 0'72((1:‘]T F, ]“ + D)

or
2

sov(@) = Z(L{FT F, )" +LDL",
n

respectively, becomes minimal.

If the linear aspect w is one-dimensional, y =c¢"f for some p-dimensional
vector ¢, we have a complete ordering of the estimators as cov(y) reduces to the
variance Var(y) which is a real number. However, in general we have to compare
matrices which are only partially ordered.
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Therefore, it becomes necessary to consider real-valued functionals of the
corresponding covariance matrices, such as the trace which measures the expected
Euclidean distance of the estimator from the true parameter value, or the determinant
(sometimes called “generalized variance”) which describes the volume of the
confidence ellipsoid for the parameter vector.

We first restrict our attention to linear criteria which aim at minimizing the trace

trace (L([F,T F)+ D)LTJ = trace [L(FlTF, ]‘U]+ trace (LDL" )

of the normalized covariance matrix cov(y) for y =LA. This covers the 4 -

criterion, L =1 ,» of minimizing the expected Euclidean distance E(| 8-/ I*), the

IMSE-criterion, L'L = J.f (x)f(x)" A(dx) , of minimizing the integrated mean squared

error for the estimated response, and all one-dimensional ¢ -criteria for a particular

pc
j=1J

linear combination = ., L=c¢" =(c,...,c,), which aim at minimizin
4 J 1 » g

the variance of the one-dimensional least squares estimator ¢’ of ¢' .

Due to the additive decomposition of the covariance matrix, all linear criteria
coincide with their fixed effects model counterpart,

trace[L[FlT F, )_LT]
up to an additive constant, trace(LDL') . Hence, for a linear criterion function every
optimal design in the reduced fixed effects model

.
Y, =) B2,

neglecting the individual effects (D = 0), which minimizes trace(L(F,'F,)"L"), turns

out to be optimal in the corresponding mixed effects model.
For every design (x,,...,x, ), characterized by its design matrix F,, the efficiency

in the mixed model is given by

0 - trace[L(F,T F,) LT)+trace(LDLT)
e T trace( L(F," F,)" L")+ trace( LDL" )

where F, is the design matrix of an optimal design. It is readily seen that, for every
design, the efficiency eff, in the mixed model is at least as large as the efficiency in
the corresponding fixed effects model without individual effects (D=0).
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Consequently, a highly efficient design in the fixed effects model also performs very
well in the mixed model. Note that, in general, the efficiency specifies the amount of
information obtained by using F, instead of the optimal design matrix F,. More
precisely, n-eff <n is the approximate number of individuals needed if the optimal
F, is used to obtain the same criterion value as for the design represented by F,
applied to » individiuals.

Other criteria do not share the property of linearity, and hence the optimal design
in the mixed effects model may differ substantially from its fixed model counterpart.
For example, for the commonly used D -criterion, the determinant det ((F,T F)'+ D)
of the standardized covariance matrix has to be minimized, which essentially
describes the volume of a confidence ellipsoid for £ . Obviously, minimization of
det((F,T F)" +D) and det((F‘T F,)"] may yield different solutions. Examples are
given below.

Similar findings hold for the G -criterion which aims at minimizing the worst
value of the variance function

supf(x)" ((FF,)™" +D)f(x)

xey

of prediction over the design region % .
The efficiencies for the D - and G -criterion are

sup,, (x)" (F'E)™" +D)f(x)
SUPyey f(x)T ((F]TF| )VI +D)f(x) °’

eff, =

D

( det((F,'F,)"'+D) : respectively

p
det((F,TF, )-I+D)) and effG =

Example 1. We consider the most simple design setting of a dichotomous design
variable xe{l,2}. Here, x=1 and x=2 describe two different methods of
measurement of certain characteristics for each individual. Measurements may be
replicated and are subject to measurement errors. The individual effects b, and b,
are assumed to be random with means g and g,, respectively, for the two
measurement methods. Furthermore, we suppose that the number m of replications is
the same for all individuals, e.g. due to constraints on the number of blood samples
that can be taken. Finally all individuals should be treated in the same way due to
organizational constraints, i. e. for each individual m(1) observations are made with
method 1 while m(2) = m — m(1) observations are made with method 2.

With a standard dummy coding, f(1)=(1,0)" and f(2)=(0,1)", we obtain for the
standardized covariance matrix

_[m)' +d,  dy

d

F'F)'+D ,
(F, F) 3 m(2)+d,,



A Note on Designs for Estimating Population Parameters 37

where d; are the corresponding entries in the initial dispersion matrix D of the
random effects b, and b,, Var(h;,) =o’d,;, cov(b,,b,) =0’ d),.

Hence, for the linear A- and IMSE-criterion the optimal design assigns
m()=m(2)=m/2  observation to both methods if m is even
(m() =m(2)x£1=(m=1)/2 if m is odd). This is the equal allocation rule, which is
optimal if the random effects are ignored.

For the D -criterion we have to minimize (d,, +1/m(1))(d,, +1/m(2)). The D -

optimal values of m(l) are presented in Table 1 for certain combinations of d,,, d,,,
and m.

Table 1. D -optimal values of m(l) for d,, =1, d,, =1,2,5,10,100, and m = 2,4,10,100

dy
m 1 2 5 10 100
2 1 1 1
4 2 2 3 3 3
10 5 6 7 7 9
100 50 59 69 76 91

Note that 1<m(l)<m-1 in order to achieve identifiability. If m is large the
proportion & = m(1)/m may be considered to vary continuously between 0 and 1. By
standard calculus the optimal proportion has to satisfy d,,a’ —d,,(1-a)’ =(1-2a)/m.

For m large this is achieved for m(j) proportional to d;"*, i.e. m(1)

z@/(\/cz +\/Z ). The entries in Table 1 corresponding to m =100 are already
close to the limiting values. In this situation the D -efficiency of the equal allocation
rule, m(1) ~ m(2), may drop to 70%.

Similarly, for the G -criterion, we have to minimize max(d,, +1/m(l), d,, +1/m(2)) .
For m large and d,,,d,, small (e. g.d,,=2/m,d,, =0) the efficiency of the equal
allocation rule may be reduced to 85%.

Typically, in most applications, the number m of replications will be small. Of
course, for saturated designs with m =2, the equal allocation rule, m(1) =m(2) =1, is
the only design which identifies the parameters and is therefore optimal. For
m=4,d,=2/3,d, =0 the equal allocation rule is substantially outperformed by the
design m(1)=3 and m(2)=1 for the G -criterion (efficiency 86%) and by the
contrary design m(1) =1 and m(2) =3 for the D -criterion (efficiency 97%). Note that
the G -criterion is more sensitive to random effects. In contrast to the case of fixed
effects models, the D - and G -criteria lead to opposite optimal designs, a counter-
intuitive fact, which, as far as we know, has not yet been addressed in the literature.
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Example 2. For the linear regression model ¥, = b, +5, x, + £; the optimal design
points will in many cases be located at the endpoints when the design region y is an
interval, by virtue of majorization arguments (see e. g. Krafft, 1978, p. 250). At least,
such designs will be very efficient. As the D- and G-criterion are not affected by
reparameterizations, if the dispersion matrix D is transformed accordingly, the linear
regression setup restricted to the optimal endpoints can be identified with the
dichotomous situation of Example 1 and the corresponding findings carry over. In
particular, for the saturated case, m = 2, it can easily be seen that it is opimal to take
one obervation at each of the two endpoints of the underlying interval. Further results
on optimal designs in a linear or quadratic random regression setup are given by Liski
et al. (2002, p. 52).

Example 3. Consider the multiple linear regression, Y, WX, by X, e,
x; =(x;,x;,), on the unit square. In the fixed effects model (D=0)a D-and G-
optimal design can be obtained as the cross-product of its one-dimensional
counterparts (see Schwabe, 1996, p. 52). In the present random effects setting this
general result does not hold true unless severe restrictions are made on the structure of
the dispersion matrix D. However, if interest is solely in the direct effects
(B, 5,)=(E(b,),E(b,)) and the corresponding individual effects are uncorrelated,
cov(b,,b,) =0 , then the cross-product design remains D -optimal for (4,,p,) by
virtue of a majorization argument. This result can be extended to general additive
models as treated in Schwabe (1996, section 5.1). In this situation, full as well as
fractional factorial designs remain optimal.

=by+b,x,+b,x,+¢,

Example 4. In population pharmacokinetics exponential decay models are
considered. As the functional relation is non-linear in the parameter, in general,
Y, =n(x;,b,)+¢,, only locally optimal designs can be derived which are based on the
asymptotic covariance matrix obtained by linearization (see e.g. Mentréetal, 1997, or
Retoutetal, 2002).

For example, in the one-parameter exponential decay model, 7(x,b)=e",

0 < x <o, the asymptotic information obtained by linearization is given by

on(x, ) ’ =y g2
op

which attains its maximum at the optimal design point x* =1/8 . As there is only one
parameter, all criteria coincide and x* =1/8 is also optimal in the random effects
model.

In the two-parameter exponential decay model, 7(x,b)=b e, 0<x<w, the
asymptotic information is obtained from the linearized model
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Y,.I. ~ ﬂ(xi)Tﬁ+£U s

where

t5s)" = (aﬂa(zﬂ) ’ an;)/c;zﬂ)] (P pre )

is the vector of partial derivatives of the mean response 7 with respect to the
parameters S, and g,. In the fixed effects model the D -optimal design points are
given by 0 and x" =1/8,, with equal weights. In the random effects model the
saturated D -optimal design points, m=2, are 0 and x,, where x, depends on both
the dispersion matrix D and f,. In most situations x, is slightly larger than x°.
However, the efficiency of the design (0,x") remains surprisingly high.

5. Discussion

Population parameters require a particular design strategy which may differ
substantially from the corresponding fixed effects model ignoring the individual
random effects. If identical designs are used across individuals, we can average over
individually fitted curves and ignore the dispersion when estimating. Moreover, the
covariance matrix, and hence the design problem, becomes simpler. For linear
criteria, the optimal fixed effects designs turn out to be optimal also for the population
parameters in a random effects environment, while for other criteria certain
adjustments become necessary.

The results can be extended to treatment comparisons and similar situations: Also,
in the situation where two or more groups are to be compared, the weighted least
squares estimators for the single treatment curves coincide with the corresponding
averages of the individual curves within each treatment group, if within each group all
individuals receive the same (group-specific) design. Optimal designs can be obtained
by optimizing within each treatment group, separately, according to the group specific
dispersion. In particular, if the dispersion structure is identical across all groups, an
optimal solution can be obtained where across all groups the individuals are treated
under the same design. Such a procedure is advantageous, if not necessary, in the
setting of a blind or double-blind study, where the design is not allowed to contain
any information which might reveal the particular treatment to the individual (or the
study nurse). Moreover, in this situation the variances for single parameters coincide
across the groups, which justifies the commonly used two-stage approach to perform
a one-way analysis of variance on the individually obtained parameters. Similarly, it
can be seen that the concept of identical individual designs also proves to be optimal
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for more than one treatment factor, in the presence of block effects, and in cross-over
settings.

Topics of further research include designs that may differ across individuals, the
case of an unknown dispersion matrix at the design stage, if the criterion is not linear,
and optimal designs for the variance components and for predictions, respectively.
For example, consideration of designs that differ across individuals becomes essential
when fewer observations are available per individual than the number of parameters,
so that no individual curve can be fitted.
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